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A Nonlinear Recursive Estimation Procedure and 

Its Application to  Certain Navigation Problems 
* 

D. J. SAKRISON** 

ABSTRACT 

In the past  ten years ,  a c l a s s  oL recursive estimation methods, 

r e fe r r ed  to as Stochastic Approximation methods, has  been developed 

to  handle problems where the observations without e r r o r s  are nonlinear 

functions of the parameters  t o  be estimated [ 1-31 . 
method has  been developed t o  yield asymptotically efficient estimates 

in the type of estimation problems encountered in r ada r  and radio 

astronomy [ 41 . 
of the estimation problems arising in space navigation. 

he re  is to apply this method to  navigation and c a r r y  out the required 

modifications in the analysis. 

esting features:  

Recently, such a 

The basic method used is a l so  applicable t o  some 

Our purpose 

This method has  the following inter-  

(1) it i s  recursive and thus it allows rea l  t ime com- 

putation without extensive computing facilities; (2) it is applicable 2 

to  a broad c l a s s  of problems where the observables a r e  nonlinea 

functions of the parameters  to  be estimated. 
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1. INTRODU 'C TION 

We consider he re  problems best typified by the problem of 

trying t o  estimate the six orbital elements of a satellite or  space 

vehicle in orbit. We assume that the orbit is sufficiently high that, 

fo r  the number of orbits over which observations a r e  to  be ca r r i ed  

out, atmospheric drag can be neglected and perturbations due to  

departures  of the gravitational field f rom shperical  a r e  minor 

enough that they can be satisfactorily computed from the nominal 

orbit. Thus, during the observation interval,  the orbit can be 

satisfactorily represented by an ellipse plus a known gravitational 

perturbating t e rm.  

of this ellipse f rom a sequence of observations such as ground 

radar  sightings, on board radar  beacon sightings, star t racker  

observations, etc. 

Our objective is to  estimate the six elements 

The method we consider he re  has  the following advantages: 

(1) since it is recursive,  it allows real t ime computation 

and requires  only minimal computer storage; it a lso requires  

inversion of only low-order matr ices;  

(2) it directly and exactly handles the case  in which the 

observations a r e  nonlinear functions of the parameters  t o  be 

e s t imat e d . 
This  method has  the disadvantage of being useful only when the 

number of observations made is la rge ,  for the e r r o r  associated 
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with the estimate computed a t  the end of a small number of obser-  

vations is unduly large.  However, under certain conditions, this 

method is asymptotically efficient; that i s ,  the estimation e r r o r  

approaches the bound given by the Cramgr-Rao inequality as the 

number of observations becomes large.  Thus, we will focus our 

analysis on the asymptotic behavior of the estimate.  

Let the observations be made at t imes  t = 1, 2, 3 , .  . . , 
and denote the reading of the i-th of Q instruments at time t by 

i i i i 
t z = ft  ( y )  t b t et i = l , 2 9 . . . , Q  t = 1, 2, 3 . .  . 

i 
t in which f ( y )  is a known function of the orbital elements (denoted 

by the six-dimensional vector x); 
the i-th instrument, and e is a zero-mean gaussian random 

variable whose variance depends on the instrument and a l so  pos- 

sibly on the t ime t. 

ferent t imes,  either f rom the same or  different instruments,  

a r e  uncorrelated. 

i b is the bias associated with 
i 
t 

W e  assume that observations made at dif- 

In addition to  the orbital elements,  v,> we may wish to  

estimate some o r  all of the bias t e rms .  Let the total number of 

quantities to be estimated be R ,  6 < R < 6 t Q. We will denote 

an  a rb i t ra ry  set of values of these R quantities by the R-dimen- 

sional vector 2 and the t rue value of these quantities by the 

vector &. 

- - 

F o r  reasons that will be apparent l a t e rp  we will group 

together the QK observations made f rom all Q instruments 

at the t imes  

t = nK + 1, nK t 2 , .  . . (n + l)K. 

W e  pick K to be the smallest  integer such that the mean values 

of these QK measurements  uniquely determine x. (If not all the 
N 
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bias terms a r e  included in 5 this unique determination wi l l  be in 

e r r o r ) .  We denote this collection of observations made from time 

t = nK to  t = (n t l)K by the QK dimensional vector 3n = q y  4- sn * 
in which all the bias t e r m s  have been included in &(z) : i f  E does 

not include all the bias t e r m s ,  our final estimate will contain an  e r r o r  

determined directly by the bias t e r m s  not included in E. 
i s  a zero-mean gaussian vector random variable which is uncor- 

related for  different values of n and whose covariance matrix 

we denote by 

Thus zn 

the pr ime denoting the transpose of a vector (or  matrix). 

assume the e r r o r s  f rom different instruments a r e  uncorrelated,  

then & will be diagonal. Our uniqueness requirement implies 

that  the function f (3 possesses  a unique inverse for  all values 

of x, which a r e  regarded a pr ior i  as possible. 

If we 

-n 

Having introduced the necessary notation, we proceed as 

In Sec. I1 we find the bound given by the Cramer-Rao \ follows. 

inequality for the minimum e r r o r  achievable by an unbiased es t i -  

mator .  In Sec. III we describe the recursive estimation method, 

develop an  expression for the asymptotic behavior of the e r r o r  in 

the est imates  generated by this method, and relate  this to  the 

bound given by the Cram& -Rao inequality. 

\ 

II. THE CRAMER-RAO BOUND ON THE ESTIMATION 

ERROR 

We wish to  apply the bound of the CramAr-Rao inequality 

t o  the situation described in Sec. I. 
this inequality a r e  widely available in the one -dimensional case 5 

this is not t rue  for the multidimensional case.  Therefore,  we 

first give a short  derivation of this inequality. 

Although simple proofs of 
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Let the components of the vector z- denote all the observations 

made and le t  the distribution of /v z for a value 

estimated be denoted by 

N x of the vector t o  be 

A h  Let x- = " x(z)  denote an arbi t rary unbiased estimator of E. Using 
A 

the fact that n/ x is  unbiased, we have for any set  of constants a j 

A R 
C a j  ,I(xj - ej)dP = 0 . 

j =1 

Taking the partial  derivative of both sides of this equation with respect  

t o  x. 
1 

a d P  a. = a. S d P  = Z a .  l ( x j  - €lj) axi A 
R 

1 1 j=1 J 

a 
J j J axi 

= Za.s(G - 0.) (- p) d z  

Let u s  multiply both sides of this equation by an a rb i t ra ry  constant 

b. and then s u m  over i the  equations that result  for all R values of 

i. Denoting the inner product (scalar  product or  dot product) of the 

vectors  2 and 5 by (a,?)), N we obtain 

1 
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a ,  b) =s I: a j  (Gj - O j q  b. (- ax. 
1 

(d ICI j =1 i=l 

Let 

denote the covariance mat r ix  of the estimation e r r o r s  and le t  

B denote the covariance matrix whose i-j- th element is 
N 

a a b.. = E (- In p) axi 
N . V  

1J 

( 3 )  

?hen applying the Schwartz inequality[ 61 t o  the right-hand side of 

Eq. (3) yields 

a b) < (a, X a )  (b, Bb) . - N lvd & -/v 

The matrix B is positive semi-definite. We assume that it is  

positive definite, for ,  if not, we could reduce the dimensionality 

of our problem. The mat r ix  5 is thus invertible, and we set  

(since 5 and 5 a r e  a rb i t ra ry  vectors) 

becomes 

rr 

-1 
b+= B a. Eq. (6) then 

H e  

(5) 

-1 -1 
But B is symetric or self-adjoint, thus (2 3 2) = (3 5 2) 
which is greater  than ze ro  for any nonzero .a. 

of inequality (7)  by (S-la, aJ thus yields the Cramer-Rao inequality 

cy 

Dividing both sides 
\ 

rv 

which holds for a n  a rb i t ra ry  vector a. 
N 
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Now return to the situation described in Sec. I. If we base an 

est imate  on the observations z n = 1 , 2 , .  . . , N ,  then under the assump- 

tions made on the distribution of the z we have 
/vny 

Nn 

and 

in which (af /ax.)  denotes the vector whose j-th component is --n 1 

(afnj/axi) . 
Thus 

Or ,  i f  we le t  F denote the matr ix  whose p-q-th element is given -n 
by 

\ 
then the matrix 2 appearing in the Cramer-Rao inequality is 

N N 

This equation, together with Eqs. (12) and (8), gives a lower bound 

for  the mean square e r r o r  that can be obtained in  making an unbiased 
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estimate of an a rb i t ra ry  l inear combination of parameters ,  Z R j= l  
a .x  , using the observations h, n = 1 , 2 , .  . . ,N.  We will use this 

bound as a cr i ter ion fo r  judging the performance of the estimation 

method t o  be discussed in the next section. 

J j  

III. A RECURSIVE ESTIMATION METHOD 

The recursive estimation method to  be considered he re  can 

be briefly described as follows. 

have a vector observation of the form 

A f t e r  each K-sample times we 

n = 1, 2, 3.. . 

in  which .-fn is a vector valued nonlinear function of 3 whose value 
i 

uniquely determines the value of x. Suppose, having observed z 
c -1' 

we c a r r y  out a single i teration in the usual i terative or differential 

correction procedure used to solve the nonlinear problem of finding 

the maximum likilihood estimate of 5 given zl. 
observed z we again c a r r y  out a single step in this  differential 

correct ion procedure,  basing our calculation on the result  of step 

one and weighting the usual differential correction by the factor 

1/2. 

tial correction using the observation z on the estimate resulting 

f rom the previous 

correction by the factor l /n .  The weighting l / n  is used to  

"average out'' the effects of the noise, 

vations becomes large.  

perhaps best  be understood by reference t o  the original papers  

(Ref. 1-3) describing the basic version of this type of method. 

interesting point is that although this method can be ca r r i ed  out 

in rea l  t ime and is computationally much simpler than a maximum 

liklihood estimate based simultaneously on all n observations, 

Suppose, having 

-2' 

W e  then continue in this fashion, basing the single differen- 

e n  
(n - 1) steps and weighting the differential 

e 
ryn' 

as the number of obser -  

The idea behind this  type of method can 

The 
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the performance of the two methods will be equal, under cer ta in  condi- 

tions, for large values of n (that is, they wi l l  both approach the 

bound given by the Cramer  -Rao inequality). 
\ 

We will now describe this estimation method more  precisely.  

We denote by zn+l the estimate of 2 formed after observing zn 
and we select our initial estimate either a rb i t ra r i ly  o r  on the basis 

of some a p r io r i  estimate of 5. We let ,Mn(uJ denote the matrix 

whose elements a r e  given by Eqs. (12) with the par t ia l  derivatives 

evaluated at x = u instead of x = s. Let 
H d  yv 

and 

(16) 
-1 G (x) = B (x) . -n- -h - 

We assume that there  exists some bounded subset, A ,  of R-dimen- 

sional Euclidean space that contains all values of the parameter  5 
that are regarded a p r io r i  a s  possible (it wi l l  be computationally 

convenient, but not necessary,  for A to  be a rectangle). We a lso  

assume that 8 ,  the t rue  value of 2, l ies  in the interior of A .  

sequence of est imates  x n = 1, 2, 3 , .  . . , is then determined by 

the recursive equation 

Our 
rr 

-n' 

J- * 
if not we take x -+l lies within A ,  we set x = x If G+l -+l -n+lk 

t o  be the point within A lying closest  to x %tl 
Note that if the number of measurements  or  observations 

made in a group can be picked such that the dimensionality of 

and z a r e  equal (the dimensionality of 2 wi l l  always be la rger  

than o r  equal to  that of x) then we  have the following simpLification 
N 

N 
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With a mind to  making the analysis of Ref. 4 applicable here ,  

we now point out two properties possessed by the quantities y (x) -n 
and G (x) -n - 
previously in Sec. I. 

by virtue of our definitions and the assumptions made 

Property 1. The vector random variables xn(x),  n =  1 , 2 , 3 ,  ... 
a r e  statistically independent gaussian random variables (all of whose 

components have a finite bounded variance).  

Now for convenience, let us define 

and note that 

m (e) = s. (19) /vn - 
Let m .(X,, 
direct  evaluation yields 

denote the j-th component of rnn(z); then, using Eq. (18) 
nJ 

and 

Summarizing these r emarks ,  we have 

Property 2. m (e)=  2, G - l  (0) = En, and e n  - -n 

amni($ 

j 
y ni .(B)y r~ nj . (0)}  e = bnij = - ax 
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We now need to make two further assumptions. The f i r s t  of 

these does res t r ic t  the c lass  of problems for  which the recursive es t i -  

mation method is  applicable, but is the type of restriction that must 

be satisfied by any estimation problem for which an i terative method 

can be successfully employed to find the maximum value of a nonlinear 

liklihood function. The second assumption is simply a regularity con- 

dition that can a lways  be assumed t o  hold in practice whenever the 

first assumption is satisfied. Note that 

is  z e r o  at x = 8, and by our ear l ie r  assumption on the uniqueness of 

the inverse of f (x) is ze ro  only for th i s  value of x. We now further 

assume that 

C Y h  

*n N ry 

is a l so  ze ro  only at 5 = 8. In particular,  we require 
N 

Assumption 1. There exist constants K and KO1> 0 - < KO 
0 

< K < 00 such that 
0 - 

f o r  all n and all x in A ,  1 1  
a vector. 

denoting the Euclidean norm of 
cr 

Our second assumption is 

Assumption 2. 

and 
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Note that the essential  properties of this assumption have already been 

implied by Property 2 and Assumption 1; Assumption 2 only bounds the 

behavior of the remainder te rms  3,  and T .  

Now let  us  examine the behavior of the estimates x n = 1, 2, 3 . .  . . 
-n’ 

This basic estimation method is considered in Sec. I1 of Ref. 4; there  

the character  of the observations was not assumed to change with n 

that the random variables (x) were identically distributed for all n 

and G (x) was independent of n. Nevertheless, that analysis can 

be easily modified to  accomodate the case  at hand and show that 

Proper t ies  1 and 2 and Assumptions 1 and 2 imply the existence of 

a number N such that, for n > N 

so  

n -  

-n - 

0 - 0’ 

in which C is a bounded constant, y is some number grea te r  than 

0 ,  and 
some constant t imes  n -ltY . 
diagonal entry of the mat r ix  G (e) = s1 . 

one for large values of k ;  thus, for large values of n, we have as 

a n  approximation (which can be shown to become exact as n-m) 

O(n -‘ltY ) is a term which goes to  z e r o  at least  as fast as 

The quantity g denotes the j- th 
njj 

-n - 
The quantity inside the brackets in ineq. (20) approaches 

in which we have used the bar to denote a t ime average. 

gives an  asymptotic estimate fo r  the mean square e r r o r  in the j-th 

component of our parameter  vector 

this was sufficient; here  we also wish t o  find the asymptotic behavior 

of the covariance matrix of the e r r o r s ,  o r ,  equivalently, t o  be able 

to  find the asymptotic behavior of the estimation e r r o r  for any var i -  

able which is a l inear combination of the original parameters .  

This 

5 F o r  the purposes of Ref. 4, 
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To achieve this end, let u s  consider the change of coordinates 

v = sE 
lu 

-1 x=s x .  
N 

If we note how the mat r ices  ,Mn(z) and G (x) and the vector y (x) 
e n  - e n  - 

were defined, we see that the corresponding quantities in t e r m s  of 

these new v variables wi l l  be 

(23) 
-1 R 

nsq N 

a fns  axs f (v) =- - c - - = z f (x) (2 )sp 
p s=l axs p s=l 

ar 
nq - 

av npq@ av 

thus 

and 

Y (  ,n 

F (v) = (C-l) 'M (x) ~n N ycr -nN 

G (v) = C G  (92 . (27) +ncy --n 

Using Eqs. (24-27), one can verify directly that Proper t ies  1 and 2 

remain t rue  in the new v coordinates. Next, consider Assumption 

1, letting 2v = CO. The quantity in question is 
cv 

c 

= (x - 0 )  C' CG (x)m (x) .- r c ~  , . , r ~ n d . ~ n -  

-12- 



Now if  C is a Unitary (or orthogonal) matr ix  (i .e.  , represents  a 

rotational transformation),  then for  any two vectors a and b [? ]  
cv 

ycr /v 

We wi l l  assume that 5 i s  such a Unitary matrix.  Then 

= (x - 0)' G (x)m (x) 
r~ ~ n ~ ~ n ~ v  

so that if Assumption 1 holds in  the x set  of coordinates it wi l l  

a lso hold in the v set  of coordinates. Assumption 2 wi l l  then also 

hold in the new set  of coordinates (with perhaps different values 

for the two constants). Thus, any resul ts  concerning the behavior 

of the estimation method a s  described in the x set  of coordinates 

a lso pertain when the method is described in the v coordinates. 

The equivalent of Eq. (22) i s  

Expressing this equation in the original coordinates, we have 

in which 2 may be an arbi t rary Unitary matrix.  

We would like to find the mean square e r r o r  in the estimate 

of an a rb i t ra ry  l inear combination of the x variables,  
using a corresponding l inear combination of our estimates x 

The e r r o r  in such an estimate i s  

z k  ak xk , 

nk' 
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Now the only requirement on a single row of a Unitary matrix 

i s  that the sum of the squares  of the elements in that row be equal to  

one. Thus if we scale the a ‘ s  to  meet  this  requirement, the l inear 

combination a x can be regarded as some constant t imes  a 

coordinate of a v vector, 

which has  one row proportional to the a Is. Thus Eq. (31) applies 

and we finally have 

k 

k k k  
= C&, in which is a Unitary mat r ix  

k 

We can now compare the performance of the recursive estimation 

method with the bound given by applying Eq. (26) to  the right-hand 

side of the Cramer-Rao inequality \ 

Note first that if our measurements  a r e  independent of n (as they 

might be approximately for a high circular  orbit) then 

- 
so that sn, the covariance matr ix  of the e r r o r s  in the recursive 

method, is equal to the covariance matrix of the CramGr-Rao 

bound; thus, in this  case,  the recursive method is asymptotically 

efficient. 

If each of the ma t r i ces  sn does not deviate too much f r o m  
- 
C& , then 

Cramer-Rao bound. 

of a matrix as 

is still l tc losel l  to the covariance matrix of the 
\ 

To make this prec ise ,  let  u s  define the norm 

-14- 



Note that fo r  a symmetric positive definite mat r ix  G - 8  
yv 

in which X denotes the eigenvalues of g. 
\ 

G 
N 

Now the covariance matr ix  appearing in the Cramer-Rao 

bound is 

- 
Setting G = G + AG 

~n -/n Jm 

- 
We now assume that l l G  
(this would be t rue for  example if (l/minX ) ( m a x i  ) i s  small 

with respect  to one) s o  that the inverses  inside the inner brackets 

-’ AG 1 1  is small  with respect  to one 
-Tl -n 

Gn AGn 

may  be expressed to a good approximation by the first three t e r m s  

in  a Von Neumann se r i e s  

N B-l 1 [ s k  - - 1 p  + - s k  - -1 % k + ‘ %  - -1 AG -k )‘]I-’ (38 
k=l  

su stituting this in Eq. (38)  and using the first two t e r m s  in a Von Neu- 

mann expansion of the inverse yields 
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.- 

Thus, as long as none of the individual covariance mat r ices  G 

deviates too much f rom the average ( I  I G 

t o  one), the covariance matr ix  of the CramAr-Rao bound does not 

differ appreciably from the covariance mat r ix  of the e r r o r s  associ-  

ated with the recursive estimation method. 

n - -1 
-n - n  AG I I small compared 
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